If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5(x^2-40x-1950)=0
We multiply parentheses
-5x^2+200x+9750=0
a = -5; b = 200; c = +9750;
Δ = b2-4ac
Δ = 2002-4·(-5)·9750
Δ = 235000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{235000}=\sqrt{2500*94}=\sqrt{2500}*\sqrt{94}=50\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-50\sqrt{94}}{2*-5}=\frac{-200-50\sqrt{94}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+50\sqrt{94}}{2*-5}=\frac{-200+50\sqrt{94}}{-10} $
| y=100+0.8y(-140)+300-40(4.2)+140 | | y=100+0.8(Y-140)+300-40(4.2)+140 | | x-49=7(2x+3)-5 | | -3(x+2)+13=12-4x | | 18=-w/32+20= | | 2q+18=7q-2= | | 7x=20=x-10 | | 3-(n+5)=12 | | 5y-2y-1=-2 | | (x-5)/3+(5)/3=(-x)/7 | | 5x+-14=180 | | -5x+8-3(x-1)=-(4x-4)-3x+3 | | 13.9=2.52z | | 4-13+x=65 | | 13.9=2.53z | | X^3-2x^2X^3-2x^2-9=0 | | 3k^+16k-75=0 | | x-1/15=4/5 | | 89p=3 | | 4m-12=12+16 | | x=12+× | | 39-v=163 | | n2−6n−5=0 | | 12/6x-2/6=13 | | 168-w=293 | | 163=39-v | | -3x+6=-6+x | | -5(-5+11d)=d | | -3x+2=x+14 | | X-(.20)x=500 | | -9(1-4y=Y | | x-x(0.2)=500 |